Homogeneous coordinate rings and mirror symmetry for toric varieties

نویسندگان

  • MOHAMMED ABOUZAID
  • M Abouzaid
چکیده

In this paper we give some evidence for M Kontsevich’s homological mirror symmetry conjecture [13] in the context of toric varieties. Recall that a smooth complete toric variety is given by a simplicial rational polyhedral fan ∆ such that |∆| = Rn and all maximal cones are non-singular (Fulton [10, Section 2.1]). The convex hull of the primitive vertices of the 1–cones of ∆ is a convex polytope which we denote by P, containing the origin as an interior point, and may be thought of as the Newton polytope of a Laurent polynomial W : (C?)n → C. This Laurent polynomial is the Landau–Ginzburg mirror of X .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Degenerations of Bott-samelson Varieties

We study Bott-Samelson varieties for the group GLn(C), their toric degenerations and standard monomial type bases for their homogeneous coordinate rings. A 3-dimensional example is described in detail.

متن کامل

Graded Rings and Equivariant Sheaves on Toric Varieties

In this note we derive a formalism for describing equivariant sheaves over toric varieties. This formalism is a generalization of a correspondence due to Klyachko, which states that equivariant vector bundles on toric varieties are equivalent to certain sets of filtrations of vector spaces. We systematically construct the theory from the point of view of graded ring theory and this way we consi...

متن کامل

GLSM ’ s for Gerbes ( and other toric stacks

In this paper we will discuss gauged linear sigma model descriptions of toric stacks. Toric stacks have a simple description in terms of (symplectic, GIT) C quotients of homogeneous coordinates, in exactly the same form as toric varieties. We describe the physics of the gauged linear sigma models that formally coincide with the mathematical description of toric stacks, and check that physical p...

متن کامل

Vertex Algebras and Mirror Symmetry

Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish th...

متن کامل

Weighted Blowups and Mirror Symmetry for Toric Surfaces

This paper explores homological mirror symmetry for weighted blowups of toric varieties. It will be shown that both the A-model and B-model categories have natural semiorthogonal decompositions. An explicit equivalence of the right orthogonal categories will be shown for the case of toric surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009